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Transverse stability of Kawahara solitons
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The transverse stability of the planar solitons described by the fifth-order Korteweg—de Vries equa-
tion (Kawahara solitons) is studied. It is shown that the planar solitons are unstable with respect to
bending if the coefficient at the fifth-derivative term is positive and stable if it is negative. This is in
agreement with the dynamics of the two-dimensional Kawahara solitons.

PACS number(s): 52.35.Sb

I. INTRODUCTION

We consider the transverse stability of the planar soli-
tons described by the fifth-order Korteweg—de Vries
(KdV) equation
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containing the next order dispersive term. Equation (1)
arises in dispersive fluid dynamics (e.g., shallow water
waves), plasma physics, etc. The fifth-derivative term
may lead to significant qualitative effects not only for
sufficiently large

Y [BLZ]“I,

where L is a characteristic length of nonlinear structures
[1,2], but also in cases when this parameter is small [3].
A detailed (numerical) investigation of the solitons de-
scribed by Eq. (1) was first performed by Kawahara [1],
and we call them Kawahara solitons.

The transverse stability of Kawahara solitons can be
investigated by means of the (1+2)-dimensional generali-
zation of Eq. (1), which can be written as
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where C >0 is the velocity of linear waves in the limit
when the dispersion is neglected. At y =0, the system (2)
turns into the Kadomtsev-Petviashvili (KP) equation [4],
and it can be derived in the same way. Kadomtsev and
Petviashvili came to the conclusion [4] that the planar
KdV solitons are stable for >0 and unstable at 8<O0.
On the other hand, it is known that the KP solitons are
planar in the stable case and “lumps” in the unstable.
Taking into account that the existence, structure, and dy-
namics of the planar Kawahara solitons significantly de-
pend on the signs of ¥ and B [1-3], one can expect that
their stability must also depend on these signs.

It is also interesting to compare the stability conditions
of the planar solitons with the properties of solitons and
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other pulselike solutions to Egs. (2), i.e., in (1+2) dimen-
sions [5,6], which also depend on the signs of ¥ and .

The stability conditions of the planar Kawahara soli-
tons are derived in Sec. II. In Sec. III, they are discussed
in connection with the properties of two-dimensional soli-
tons and pulselike solutions to Egs. (2).

II. STABILITY CONDITIONS
We look for a solution of Egs. (2) of the form

u=alfoE)+Af,(E,Y,T)], 3)
where

E=la/BI"*x—xy), dx,/dt=a(Y,T), (4a)

Y=Ay, T=MAt, (4b)

A is a small parameter, and f(&) satisfies the boundary
conditions

E"fo(E)—0 (|€] > , n>0). (5)

The dimensionless function f,(&) describes, as will be

confirmed below, the shape of a planar soliton. The soli-

ton bending is characterized by the dependence of a on

stretched variables Y, T and the terms O(A?) in (3).
Substituting (3) into (2b), we have
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where we have used
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Integration of (6) gives
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where ¥(t,Y,T) is determined by the condition
@(&,t,Y,T)=0

in front of the soliton, which means that the soliton
moves into an unperturbed region. Therefore

¢(0,t,Y, T)=0
¢(—0,t,Y,T)

(a>0),

9)
=0 (a<0).

From (8) and (9) it follows that W does not depend on ¢
and

W(Y,T)=%AC|§|“2(1+sgna (10)
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Substituting (3) and (11) into (2a) and collecting terms
O(1), we have

d* d2
fo d°fo
sgn(By )e? o d§2 +sgn(Ba) [%f(z) —fo ] =
(12a)
=|ya|B2 (12b)

Equations (12) with boundary conditions (5) define, as it
was assumed above, soliton solutions of the fifth-order
KdV equation (1), i.e., the Kawahara solitons, which ex-
ists at [1,3]

1
Differentiating (8) with respect to y and neglecting non- vB>0, aB<0, e>3, (132)
linear terms, we have
yB<0, af>0, O0<e<oo . (13b)
a Fxo 1
33 = IA2C afo(€) 372 5 | g |12 In both cases (13) with € > 1, the solitons have oscillatory
structures [1] and in the case
[ agfoE)+E0(8) YB>0, aB>0, e<<1, (14)
w 3% the solitons are quasistationary, radiating waves with the
—1(1+sgna )f d& fol&) 372 phase velocity equal to the soliton velocity [3]. One can
o also show that fo(&)=f(—§&).
(11) Collecting terms O(A?) in (2a), and using (7), we have
|
3/2 3 5
3fo | da a 3 /2 3 f,
+le—— | 24 |2 = —f)F—+ 2
{fo g [art | §| e st gp =St S e B
LC az'xo 1 ﬁ 2 f§ dE&' + ) 1 1+ )fw d ( ) aza (15)
=iClafor 35 |5 S5 derer+ero—$1+sena [ dgfo®) |5
Multiplying both sides of (15) by f(&), then integrating from £= — o to £= 0, and taking into account (12) and
® 9f (&) o
J 7 derole) | fole)+16 gg ] =3/ asrie), (16)
) & , , 1 o 2
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we have
da  2aC 3%, o 2 d%a B 172 © 2
S e | [T ds it ic 51 B —sgna) [ [ perag | =0. (18)
[
Introducing the notation %,  24aC 9% 3*x, 20)
— a =
a2 3 9y? atay?
a=C1Bpnlfe agfoe ] yeoo ooy ,
where a and a are considered as constants. Looking for
- . -1 the solution of Eq. (20) of the form
x dgf36) | (1—sgna) (19)
[f—oc /o8 & xo=const X exp(iky —iwt) , (21)
and taking ir}to accoupt.the seconq of Eqgs. (fta), We Come o have the dispersion relation
to the equation describing the soliton bending in linear
approximation: w*—iak’o—2aCk?*=0, (22)
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which gives
w=1kiat(3aC—a’k?)'?], (23)

where, according to (19), a=0 for a >0 and a>0 for
ay <0. Therefore, solitons are stable at @ >0 and unsta-
ble at @ <0. Taking into account (13), we conclude that
the planar Kawahara solitons are unstable with respect to
bending if

y>0, B>0, e>1, (24a)
and

>0, B<0, 0<e<ow . (24b)

As far as one of the conditions (13) must be satisfied, one
can write, instead of (24), the instability condition as

v>0. (25)
In the case
Yy <0, (26)

the planar Kawahara solitons are stable in our approxi-
mation, i.e., taking into account terms O(A?).

III. DISCUSSION

Our results, represented by (24)—(26), are in accord
with the properties of stationary solitons and nonstation-
ary pulses in (1+2) dimensions following from Egs. (2).
When the conditions (24) are held, i.e., the planar
Kawahara solitons are unstable, Eqs. (2) have stable sta-
tionary (1-+2)-dimensional soliton solutions [6] decaying
in both directions x and y at

r=(x2+y2)1/2—>oo .

(Their stability follows from numerical experiments [6]
where it has been shown how they arise from the initial
pulselike disturbances and how the larger soliton passes
through the smaller one in a collision process.) In case

(24a), the (1+2)-dimensional solitons have, like planar
Kawahara solitons [1], oscillatory structures in the direc-
tion of propagation (parallel to the x axis), and their cross
sections, parallel to the y axis, are humps with algebraic
asymptotic behavior at |y|— . For £>>1, the oscilla-
tion periods are small and, after averaging, one comes
also to algebraic asymptotic behavior at |x|— o [6]. In
case (24b), and € < 1, the (1+2)-dimensional solitons have
the humplike cross sections both in x and y planes with
algebraic asymptotic behavior [6]. (The planar
Kawahara solitons are also humps in this case [1].)

In case (26), when the planar Kawahara solitons are
stable, there are no stationary (1-+2)-dimensional soli-
tons, decaying both in x and y directions. Instead, the
pulselike solutions of Egs. (2) are wave packets, spreading
with time. In the x direction they have oscillatory struc-
tures and in the y direction they are humps [6].

While comparing the above conclusions (the planar
Kawahara solitons are stable at a >0 and unstable at
a <0) with the (1+2)-dimensional solutions of Egs. (2)
described in Ref. [6], it is important to take into account
that at yB8>0, af3>0 there are no stationary planar soli-
tons [3]. Then one has a complete conciliation of the sta-
bility conditions, derived above, with the (1-+2)-
dimensional solutions [6] in a sense that the situation is
the same as for the KdV-KP equations: When the planar
KdV solitons are stable (3> 0), they are the only soliton
solutions of the KP equations; if the planar KdV solitons
are unstable (8 <0), the KP solitons are lumps with alge-
braic asymptotics at ¥ — 0.
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